next up previous contents
: 実装 : 一次 : 実装   目次

形状関数の微分

形状関数の自然座標 $ \{ \xi \} $ に関する 微分 $ \frac{ \partial N }{ \partial \{ \xi \} } _{(In)}$ は、


$\displaystyle \frac{ \partial N }{ \partial \xi } _{(0)}$ $\textstyle =$ $\displaystyle -1/8 (1 - \eta) (1 - \zeta)$  
$\displaystyle \frac{ \partial N }{ \partial \xi } _{(1)}$ $\textstyle =$ $\displaystyle 1/8 (1 - \eta) (1 - \zeta)$  
$\displaystyle \frac{ \partial N }{ \partial \xi } _{(2)}$ $\textstyle =$ $\displaystyle 1/8 (1 + \eta) (1 - \zeta)$  
$\displaystyle \frac{ \partial N }{ \partial \xi } _{(3)}$ $\textstyle =$ $\displaystyle -1/8 (1 + \eta) (1 - \zeta)$  
$\displaystyle \frac{ \partial N }{ \partial \xi } _{(4)}$ $\textstyle =$ $\displaystyle -1/8 (1 - \eta) (1 + \zeta)$  
$\displaystyle \frac{ \partial N }{ \partial \xi } _{(5)}$ $\textstyle =$ $\displaystyle 1/8 (1 - \eta) (1 + \zeta)$  
$\displaystyle \frac{ \partial N }{ \partial \xi } _{(6)}$ $\textstyle =$ $\displaystyle 1/8 (1 + \eta) (1 + \zeta)$  
$\displaystyle \frac{ \partial N }{ \partial \xi } _{(7)}$ $\textstyle =$ $\displaystyle -1/8 (1 + \eta) (1 + \zeta)$  


$\displaystyle \frac{ \partial N }{ \partial \eta } _{(0)}$ $\textstyle =$ $\displaystyle -1/8 (1 - \xi) (1 - \zeta)$  
$\displaystyle \frac{ \partial N }{ \partial \eta } _{(1)}$ $\textstyle =$ $\displaystyle -1/8 (1 + \xi) (1 - \zeta)$  
$\displaystyle \frac{ \partial N }{ \partial \eta } _{(2)}$ $\textstyle =$ $\displaystyle 1/8 (1 + \xi) (1 - \zeta)$  
$\displaystyle \frac{ \partial N }{ \partial \eta } _{(3)}$ $\textstyle =$ $\displaystyle 1/8 (1 - \xi) (1 - \zeta)$  
$\displaystyle \frac{ \partial N }{ \partial \eta } _{(4)}$ $\textstyle =$ $\displaystyle -1/8 (1 - \xi) (1 + \zeta)$  
$\displaystyle \frac{ \partial N }{ \partial \eta } _{(5)}$ $\textstyle =$ $\displaystyle -1/8 (1 + \xi) (1 + \zeta)$  
$\displaystyle \frac{ \partial N }{ \partial \eta } _{(6)}$ $\textstyle =$ $\displaystyle 1/8 (1 + \xi) (1 + \zeta)$  
$\displaystyle \frac{ \partial N }{ \partial \eta } _{(7)}$ $\textstyle =$ $\displaystyle 1/8 (1 - \xi) (1 + \zeta)$ (2.68)


$\displaystyle \frac{ \partial N }{ \partial \zeta } _{(0)}$ $\textstyle =$ $\displaystyle -1/8 (1 - \xi) (1 - \eta)$  
$\displaystyle \frac{ \partial N }{ \partial \zeta } _{(1)}$ $\textstyle =$ $\displaystyle -1/8 (1 + \xi) (1 - \eta)$  
$\displaystyle \frac{ \partial N }{ \partial \zeta } _{(2)}$ $\textstyle =$ $\displaystyle -1/8 (1 + \xi) (1 + \eta)$  
$\displaystyle \frac{ \partial N }{ \partial \zeta } _{(3)}$ $\textstyle =$ $\displaystyle -1/8 (1 - \xi) (1 + \eta)$  
$\displaystyle \frac{ \partial N }{ \partial \zeta } _{(4)}$ $\textstyle =$ $\displaystyle 1/8 (1 - \xi) (1 - \eta)$  
$\displaystyle \frac{ \partial N }{ \partial \zeta } _{(5)}$ $\textstyle =$ $\displaystyle 1/8 (1 + \xi) (1 - \eta)$  
$\displaystyle \frac{ \partial N }{ \partial \zeta } _{(6)}$ $\textstyle =$ $\displaystyle 1/8 (1 + \xi) (1 + \eta)$  
$\displaystyle \frac{ \partial N }{ \partial \zeta } _{(7)}$ $\textstyle =$ $\displaystyle 1/8 (1 - \xi) (1 + \eta)$ (2.69)




next up previous contents
: 実装 : 一次 : 実装   目次
Hiroshi KAWAI 平成15年8月11日