next up previous contents
: 実装 : 二次serendipity : 二次serendipity   目次

形状関数

形状関数 $N_{(In)}$ を自然座標 $ \{ \xi \} $ で表現すると、 以下のようになる。


$\displaystyle N_{(0)}$ $\textstyle =$ $\displaystyle -1/8 (1 - \xi) (1 - \eta) (1 - \zeta) (2 + \xi + \eta + \zeta)$  
$\displaystyle N_{(1)}$ $\textstyle =$ $\displaystyle -1/8 (1 + \xi) (1 - \eta) (1 - \zeta) (2 - \xi + \eta + \zeta)$  
$\displaystyle N_{(2)}$ $\textstyle =$ $\displaystyle -1/8 (1 + \xi) (1 + \eta) (1 - \zeta) (2 - \xi - \eta + \zeta)$  
$\displaystyle N_{(3)}$ $\textstyle =$ $\displaystyle -1/8 (1 - \xi) (1 + \eta) (1 - \zeta) (2 + \xi - \eta + \zeta)$  
$\displaystyle N_{(4)}$ $\textstyle =$ $\displaystyle -1/8 (1 - \xi) (1 - \eta) (1 + \zeta) (2 + \xi + \eta - \zeta)$  
$\displaystyle N_{(5)}$ $\textstyle =$ $\displaystyle -1/8 (1 + \xi) (1 - \eta) (1 + \zeta) (2 - \xi + \eta - \zeta)$  
$\displaystyle N_{(6)}$ $\textstyle =$ $\displaystyle -1/8 (1 + \xi) (1 + \eta) (1 + \zeta) (2 - \xi - \eta - \zeta)$  
$\displaystyle N_{(7)}$ $\textstyle =$ $\displaystyle -1/8 (1 - \xi) (1 + \eta) (1 + \zeta) (2 + \xi - \eta - \zeta)$  
$\displaystyle N_{(8)}$ $\textstyle =$ $\displaystyle 1/4 (1 - \xi^2) (1 - \eta) (1 - \zeta)$  
$\displaystyle N_{(9)}$ $\textstyle =$ $\displaystyle 1/4 (1 - \eta^2) (1 - \zeta) (1 + \xi)$  
$\displaystyle N_{(10)}$ $\textstyle =$ $\displaystyle 1/4 (1 - \xi^2) (1 + \eta) (1 - \zeta)$  
$\displaystyle N_{(11)}$ $\textstyle =$ $\displaystyle 1/4 (1 - \eta^2) (1 - \zeta) (1 - \xi)$  
$\displaystyle N_{(12)}$ $\textstyle =$ $\displaystyle 1/4 (1 - \zeta^2) (1 - \xi) (1 - \eta)$  
$\displaystyle N_{(13)}$ $\textstyle =$ $\displaystyle 1/4 (1 - \zeta^2) (1 + \xi) (1 - \eta)$  
$\displaystyle N_{(14)}$ $\textstyle =$ $\displaystyle 1/4 (1 - \zeta^2) (1 + \xi) (1 + \eta)$  
$\displaystyle N_{(15)}$ $\textstyle =$ $\displaystyle 1/4 (1 - \zeta^2) (1 - \xi) (1 + \eta)$  
$\displaystyle N_{(16)}$ $\textstyle =$ $\displaystyle 1/4 (1 - \xi^2) (1 - \eta) (1 + \zeta)$  
$\displaystyle N_{(17)}$ $\textstyle =$ $\displaystyle 1/4 (1 - \eta^2) (1 + \zeta) (1 + \xi)$  
$\displaystyle N_{(18)}$ $\textstyle =$ $\displaystyle 1/4 (1 - \xi^2) (1 + \eta) (1 + \zeta)$  
$\displaystyle N_{(19)}$ $\textstyle =$ $\displaystyle 1/4 (1 - \eta^2) (1 + \zeta) (1 - \xi)$ (2.70)




next up previous contents
: 実装 : 二次serendipity : 二次serendipity   目次
Hiroshi KAWAI 平成15年8月11日