next up previous contents
: 実装 : 二次serendipity : 実装   目次

形状関数の微分

形状関数の自然座標 $ \{ \xi \} $ に関する 微分 $ \frac{ \partial N }{ \partial \{ \xi \} } _{(In)}$ は、


$\displaystyle \frac{ \partial N }{ \partial \xi } _{(0)}$ $\textstyle =$ $\displaystyle 1/8 (1 - \eta) (1 - \zeta) (1 + 2 \xi + \eta + \zeta)$  
$\displaystyle \frac{ \partial N }{ \partial \xi } _{(1)}$ $\textstyle =$ $\displaystyle -1/8 (1 - \eta) (1 - \zeta) (1 - 2 \xi + \eta + \zeta)$  
$\displaystyle \frac{ \partial N }{ \partial \xi } _{(2)}$ $\textstyle =$ $\displaystyle -1/8 (1 + \eta) (1 - \zeta) (1 - 2 \xi - \eta + \zeta)$  
$\displaystyle \frac{ \partial N }{ \partial \xi } _{(3)}$ $\textstyle =$ $\displaystyle 1/8 (1 + \eta) (1 - \zeta) (1 + 2 \xi - \eta + \zeta)$  
$\displaystyle \frac{ \partial N }{ \partial \xi } _{(4)}$ $\textstyle =$ $\displaystyle 1/8 (1 - \eta) (1 + \zeta) (1 + 2 \xi + \eta - \zeta)$  
$\displaystyle \frac{ \partial N }{ \partial \xi } _{(5)}$ $\textstyle =$ $\displaystyle -1/8 (1 - \eta) (1 + \zeta) (1 - 2 \xi + \eta - \zeta)$  
$\displaystyle \frac{ \partial N }{ \partial \xi } _{(6)}$ $\textstyle =$ $\displaystyle -1/8 (1 + \eta) (1 + \zeta) (1 - 2 \xi - \eta - \zeta)$  
$\displaystyle \frac{ \partial N }{ \partial \xi } _{(7)}$ $\textstyle =$ $\displaystyle 1/8 (1 + \eta) (1 + \zeta) (1 + 2 \xi - \eta - \zeta)$  
$\displaystyle \frac{ \partial N }{ \partial \xi } _{(8)}$ $\textstyle =$ $\displaystyle -1/2 \xi (1 - \eta) (1 - \zeta)$  
$\displaystyle \frac{ \partial N }{ \partial \xi } _{(9)}$ $\textstyle =$ $\displaystyle 1/4 (1 - \eta^2) (1 - \zeta)$  
$\displaystyle \frac{ \partial N }{ \partial \xi } _{(10)}$ $\textstyle =$ $\displaystyle -1/2 \xi (1 + \eta) (1 - \zeta)$  
$\displaystyle \frac{ \partial N }{ \partial \xi } _{(11)}$ $\textstyle =$ $\displaystyle -1/4 (1 - \eta^2) (1 - \zeta)$  
$\displaystyle \frac{ \partial N }{ \partial \xi } _{(12)}$ $\textstyle =$ $\displaystyle -1/4 (1 - \zeta^2) (1 - \eta)$  
$\displaystyle \frac{ \partial N }{ \partial \xi } _{(13)}$ $\textstyle =$ $\displaystyle 1/4 (1 - \zeta^2) (1 - \eta)$  
$\displaystyle \frac{ \partial N }{ \partial \xi } _{(14)}$ $\textstyle =$ $\displaystyle 1/4 (1 - \zeta^2) (1 + \eta)$  
$\displaystyle \frac{ \partial N }{ \partial \xi } _{(15)}$ $\textstyle =$ $\displaystyle -1/4 (1 - \zeta^2) (1 + \eta)$  
$\displaystyle \frac{ \partial N }{ \partial \xi } _{(16)}$ $\textstyle =$ $\displaystyle -1/2 \xi (1 - \eta) (1 + \zeta)$  
$\displaystyle \frac{ \partial N }{ \partial \xi } _{(17)}$ $\textstyle =$ $\displaystyle 1/4 (1 - \eta^2) (1 + \zeta)$  
$\displaystyle \frac{ \partial N }{ \partial \xi } _{(18)}$ $\textstyle =$ $\displaystyle -1/2 \xi (1 + \eta) (1 + \zeta)$  
$\displaystyle \frac{ \partial N }{ \partial \xi } _{(19)}$ $\textstyle =$ $\displaystyle -1/4 (1 - \eta^2) (1 + \zeta)$ (2.71)


$\displaystyle \frac{ \partial N }{ \partial \eta } _{(0)}$ $\textstyle =$ $\displaystyle 1/8 (1 - \zeta) (1 - \xi) (1 + \xi + 2 \eta + \zeta)$  
$\displaystyle \frac{ \partial N }{ \partial \eta } _{(1)}$ $\textstyle =$ $\displaystyle 1/8 (1 - \zeta) (1 + \xi) (1 - \xi + 2 \eta + \zeta)$  
$\displaystyle \frac{ \partial N }{ \partial \eta } _{(2)}$ $\textstyle =$ $\displaystyle -1/8 (1 - \zeta) (1 + \xi) (1 - \xi - 2 \eta + \zeta)$  
$\displaystyle \frac{ \partial N }{ \partial \eta } _{(3)}$ $\textstyle =$ $\displaystyle -1/8 (1 - \zeta) (1 - \xi) (1 + \xi - 2 \eta + \zeta)$  
$\displaystyle \frac{ \partial N }{ \partial \eta } _{(4)}$ $\textstyle =$ $\displaystyle 1/8 (1 + \zeta) (1 - \xi) (1 + \xi + 2 \eta - \zeta)$  
$\displaystyle \frac{ \partial N }{ \partial \eta } _{(5)}$ $\textstyle =$ $\displaystyle 1/8 (1 + \zeta) (1 + \xi) (1 - \xi + 2 \eta - \zeta)$  
$\displaystyle \frac{ \partial N }{ \partial \eta } _{(6)}$ $\textstyle =$ $\displaystyle -1/8 (1 + \zeta) (1 + \xi) (1 - \xi - 2 \eta - \zeta)$  
$\displaystyle \frac{ \partial N }{ \partial \eta } _{(7)}$ $\textstyle =$ $\displaystyle -1/8 (1 + \zeta) (1 - \xi) (1 + \xi - 2 \eta - \zeta)$  
$\displaystyle \frac{ \partial N }{ \partial \eta } _{(8)}$ $\textstyle =$ $\displaystyle -1/4 (1 - \xi^2) (1 - \zeta)$  
$\displaystyle \frac{ \partial N }{ \partial \eta } _{(9)}$ $\textstyle =$ $\displaystyle -1/2 \eta (1 - \zeta) (1 + \xi)$  
$\displaystyle \frac{ \partial N }{ \partial \eta } _{(10)}$ $\textstyle =$ $\displaystyle 1/4 (1 - \xi^2) (1 - \zeta)$  
$\displaystyle \frac{ \partial N }{ \partial \eta } _{(11)}$ $\textstyle =$ $\displaystyle -1/2 \eta (1 - \zeta) (1 - \xi)$  
$\displaystyle \frac{ \partial N }{ \partial \eta } _{(12)}$ $\textstyle =$ $\displaystyle -1/4 (1 - \zeta^2) (1 - \xi)$  
$\displaystyle \frac{ \partial N }{ \partial \eta } _{(13)}$ $\textstyle =$ $\displaystyle -1/4 (1 - \zeta^2) (1 + \xi)$  
$\displaystyle \frac{ \partial N }{ \partial \eta } _{(14)}$ $\textstyle =$ $\displaystyle 1/4 (1 - \zeta^2) (1 + \xi)$  
$\displaystyle \frac{ \partial N }{ \partial \eta } _{(15)}$ $\textstyle =$ $\displaystyle 1/4 (1 - \zeta^2) (1 - \xi)$  
$\displaystyle \frac{ \partial N }{ \partial \eta } _{(16)}$ $\textstyle =$ $\displaystyle -1/4 (1 - \xi^2) (1 + \zeta)$  
$\displaystyle \frac{ \partial N }{ \partial \eta } _{(17)}$ $\textstyle =$ $\displaystyle -1/2 \eta (1 + \zeta) (1 + \xi)$  
$\displaystyle \frac{ \partial N }{ \partial \eta } _{(18)}$ $\textstyle =$ $\displaystyle 1/4 (1 - \xi^2) (1 + \zeta)$  
$\displaystyle \frac{ \partial N }{ \partial \eta } _{(19)}$ $\textstyle =$ $\displaystyle -1/2 \eta (1 + \zeta) (1 - \xi)$ (2.72)


$\displaystyle \frac{ \partial N }{ \partial \zeta } _{(0)}$ $\textstyle =$ $\displaystyle 1/8 (1 - \xi) (1 - \eta) (1 + \xi + \eta + 2 \zeta)$  
$\displaystyle \frac{ \partial N }{ \partial \zeta } _{(1)}$ $\textstyle =$ $\displaystyle 1/8 (1 + \xi) (1 - \eta) (1 - \xi + \eta + 2 \zeta)$  
$\displaystyle \frac{ \partial N }{ \partial \zeta } _{(2)}$ $\textstyle =$ $\displaystyle 1/8 (1 + \xi) (1 + \eta) (1 - \xi - \eta + 2 \zeta)$  
$\displaystyle \frac{ \partial N }{ \partial \zeta } _{(3)}$ $\textstyle =$ $\displaystyle 1/8 (1 - \xi) (1 + \eta) (1 + \xi - \eta + 2 \zeta)$  
$\displaystyle \frac{ \partial N }{ \partial \zeta } _{(4)}$ $\textstyle =$ $\displaystyle -1/8 (1 - \xi) (1 - \eta) (1 + \xi + \eta - 2 \zeta)$  
$\displaystyle \frac{ \partial N }{ \partial \zeta } _{(5)}$ $\textstyle =$ $\displaystyle -1/8 (1 + \xi) (1 - \eta) (1 - \xi + \eta - 2 \zeta)$  
$\displaystyle \frac{ \partial N }{ \partial \zeta } _{(6)}$ $\textstyle =$ $\displaystyle -1/8 (1 + \xi) (1 + \eta) (1 - \xi - \eta - 2 \zeta)$  
$\displaystyle \frac{ \partial N }{ \partial \zeta } _{(7)}$ $\textstyle =$ $\displaystyle -1/8 (1 - \xi) (1 + \eta) (1 + \xi - \eta - 2 \zeta)$  
$\displaystyle \frac{ \partial N }{ \partial \zeta } _{(8)}$ $\textstyle =$ $\displaystyle -1/4 (1 - \xi^2) (1 - \eta)$  
$\displaystyle \frac{ \partial N }{ \partial \zeta } _{(9)}$ $\textstyle =$ $\displaystyle -1/4 (1 - \eta^2) (1 + \xi)$  
$\displaystyle \frac{ \partial N }{ \partial \zeta } _{(10)}$ $\textstyle =$ $\displaystyle -1/4 (1 - \xi^2) (1 + \eta)$  
$\displaystyle \frac{ \partial N }{ \partial \zeta } _{(11)}$ $\textstyle =$ $\displaystyle -1/4 (1 - \eta^2) (1 - \xi)$  
$\displaystyle \frac{ \partial N }{ \partial \zeta } _{(12)}$ $\textstyle =$ $\displaystyle -1/2 \zeta (1 - \xi) (1 - \eta)$  
$\displaystyle \frac{ \partial N }{ \partial \zeta } _{(13)}$ $\textstyle =$ $\displaystyle -1/2 \zeta (1 + \xi) (1 - \eta)$  
$\displaystyle \frac{ \partial N }{ \partial \zeta } _{(14)}$ $\textstyle =$ $\displaystyle -1/2 \zeta (1 + \xi) (1 + \eta)$  
$\displaystyle \frac{ \partial N }{ \partial \zeta } _{(15)}$ $\textstyle =$ $\displaystyle -1/2 \zeta (1 - \xi) (1 + \eta)$  
$\displaystyle \frac{ \partial N }{ \partial \zeta } _{(16)}$ $\textstyle =$ $\displaystyle 1/4 (1 - \xi^2) (1 - \eta)$  
$\displaystyle \frac{ \partial N }{ \partial \zeta } _{(17)}$ $\textstyle =$ $\displaystyle 1/4 (1 - \eta^2) (1 + \xi)$  
$\displaystyle \frac{ \partial N }{ \partial \zeta } _{(18)}$ $\textstyle =$ $\displaystyle 1/4 (1 - \xi^2) (1 + \eta)$  
$\displaystyle \frac{ \partial N }{ \partial \zeta } _{(19)}$ $\textstyle =$ $\displaystyle 1/4 (1 - \eta^2) (1 - \xi)$ (2.73)




next up previous contents
: 実装 : 二次serendipity : 実装   目次
Hiroshi KAWAI 平成15年8月11日