next up previous contents
: 実装 : 二次 : 実装   目次

形状関数の勾配

形状関数の勾配 $ \frac{ \partial N }{ \partial \{ x \} } _{(In)}$ は、


$\displaystyle \frac{ \partial N }{ \partial \{ x \} } _{(0)}$ $\textstyle =$ $\displaystyle {
\left \langle \begin{array}{ccc}
4 b0 L0 - b0 & 4 c0 L0 - c0 & 4 d0 L0 - d0
\end{array} \right \rangle
} ^ { T }$  
$\displaystyle \frac{ \partial N }{ \partial \{ x \} } _{(1)}$ $\textstyle =$ $\displaystyle {
\left \langle \begin{array}{ccc}
4 b1 L1 - b1 & 4 c1 L1 - c1 & 4 d1 L1 - d1
\end{array} \right \rangle
} ^ { T }$  
$\displaystyle \frac{ \partial N }{ \partial \{ x \} } _{(2)}$ $\textstyle =$ $\displaystyle {
\left \langle \begin{array}{ccc}
4 b2 L2 - b2 & 4 c2 L2 - c2 & 4 d2 L2 - d2
\end{array} \right \rangle
} ^ { T }$  
$\displaystyle \frac{ \partial N }{ \partial \{ x \} } _{(3)}$ $\textstyle =$ $\displaystyle {
\left \langle \begin{array}{ccc}
4 b3 L3 - b3 & 4 c3 L3 - c3 & 4 d3 L3 - d3
\end{array} \right \rangle
} ^ { T }$  
$\displaystyle \frac{ \partial N }{ \partial \{ x \} } _{(4)}$ $\textstyle =$ $\displaystyle {
\left \langle \begin{array}{ccc}
4 b1 L0 + 4 b0 L1 & 4 c1 L0 + 4 c0 L1 & 4 d1 L0 + 4 d0 L1
\end{array} \right \rangle
} ^ { T }$  
$\displaystyle \frac{ \partial N }{ \partial \{ x \} } _{(5)}$ $\textstyle =$ $\displaystyle {
\left \langle \begin{array}{ccc}
4 b2 L0 + 4 b0 L2 & 4 c2 L0 + 4 c0 L2 & 4 d2 L0 + 4 d0 L2
\end{array} \right \rangle
} ^ { T }$  
$\displaystyle \frac{ \partial N }{ \partial \{ x \} } _{(6)}$ $\textstyle =$ $\displaystyle {
\left \langle \begin{array}{ccc}
4 b3 L0 + 4 b0 L3 & 4 c3 L0 + 4 c0 L3 & 4 d3 L0 + 4 d0 L3
\end{array} \right \rangle
} ^ { T }$  
$\displaystyle \frac{ \partial N }{ \partial \{ x \} } _{(7)}$ $\textstyle =$ $\displaystyle {
\left \langle \begin{array}{ccc}
4 b2 L1 + 4 b1 L2 & 4 c2 L1 + 4 c1 L2 & 4 d2 L1 + 4 d1 L2
\end{array} \right \rangle
} ^ { T }$  
$\displaystyle \frac{ \partial N }{ \partial \{ x \} } _{(8)}$ $\textstyle =$ $\displaystyle {
\left \langle \begin{array}{ccc}
4 b3 L2 + 4 b2 L3 & 4 c3 L2 + 4 c2 L3 & 4 d3 L2 + 4 d2 L3
\end{array} \right \rangle
} ^ { T }$  
$\displaystyle \frac{ \partial N }{ \partial \{ x \} } _{(9)}$ $\textstyle =$ $\displaystyle {
\left \langle \begin{array}{ccc}
4 b1 L3 + 4 b3 L1 & 4 c1 L3 + 4 c3 L1 & 4 d1 L3 + 4 d3 L1
\end{array} \right \rangle
} ^ { T }$  





Hiroshi KAWAI 平成15年8月11日