Co/Ni 人工格子垂直磁化膜における核形成磁界および磁壁抗磁力に及ぼす Au 下地層の影響

吉岡涼 田浦皓士 田中輝光 松山公秀 (九州大学)

1 はじめに

Co/Ni, Co/Pd 等の人工格子垂直磁化膜は, レーストラック メモリ等の磁壁移動型デバイスの材料としての応用が期待 されている.磁壁抗磁力は,磁壁移動型デバイスの動作電 力や情報安定性に影響する重要な磁気特性である.保磁 力や異方性定数に関しては Ta, Pt 等における顕著な下地 層効果^{1),2)}が報告されているが,下地層が磁壁抗磁力に与 える影響に関する報告例はあまり多くない.本研究では, 磁壁抗磁力と核形成磁界との関係性に注目して,これらの Au 下地層厚依存性について系統的な実験を行った.

2 実験

電子ビーム蒸着法によりガラス基板上に Ti(0.5 nm)/Au(t nm)を成膜後, その上に DC マグネトロンスパッタリング法で [Co(0.2 nm)/Ni(0.8 nm)]_Nの成膜を行った.磁気特性の評価は極 Kerr 効果測定により行った.磁気ヒステリシス曲線から核形成磁界 H_N を評価し,交流消磁状態からの初磁化曲線より磁壁抗磁力 H_W を求めた.

3 実験結果

Fig.1 に示す[Co(0.2 nm)/Ni(0.8nm)]₅のヒステリシス曲 線と初磁化曲線の Au 下地層厚依存性に示されるように, H_N, H_Wは t の増大に伴い顕著に増大している. これは, Au 下地層が膜厚の増加に伴い,自身の(111)結晶面配向性 が向上し, Co/Ni 人工格子膜の(111)結晶面の配向性を向 上させ垂直磁気異方性を増大させるためだと考えられる 3) 同様のAu下地層厚依存性はCo/Pd人工格子膜において も確認された. Fig.2 は[Co(0.2 nm)/Ni(0.8nm)]_N (N=3, 5) における H_W/H_N の t 依存性を示している. H_W/H_N は t の増 大に伴い増加していることが分かる.多層膜の積層数 N及 び Au 層厚の異なる種々の試料について、 H_{μ}/H_{N} と H_{N} の 関係をプロットした結果を Fig.3 に示す. 同図に示されるよ うに、H_W/H_NとH_Nとは積層数に係わらずほぼ同じ相関傾 向を呈していることが分かる. H_Nは垂直磁気異方性を反映 することから, H_Nの小さい膜では磁壁幅([~]π(A/Ku)1/2)が 大きくなることが推測され,これにより異方性分散等に起因 する磁壁ピン止め効果が低減された結果 H_W/H_Nが減少す るものと考えられる.

4 まとめ

本研究では、Co/Ni多層膜においてAuを用いた下地層に おける H_N, H_Wへの効果を調査した.その結果、Co/Ni人 工格子膜において、Au下地層厚の増加に伴い H_N, H_Wが 顕著に増大することが分かった.これは、Au下地厚の増加 に伴う(111)結晶面配向性の上昇による Co/Ni人工格子膜 の(111)結晶面配向性の向上によるものだと考えられる.ま たH_W/H_NとH_Nとは積層数に係わらず下地層厚に対してほ ぼ同じ相関傾向を示すことが分かった.H_Nの小さい膜は磁 壁幅が大きくなり、異方性分散等による磁壁のピン止め効

Fig. 1. Hysteresis and initial magnetization curves of $[Co(0.2nm)/Ni(0.8nm)]_5$ deposited on Au (*t* nm) underlayer.

Fig. 2. The Dependence of $H_{\rm W}$ / $H_{\rm N}$ on the thickness of Au underlayer.

Fig. 3. The dependence of H_W / H_N on H_N measured for various Au thickness.

果が低減され H_W/H_Nが減少すると考えられる.

参考文献

- [1] R. Law et al., *Appl. Phys. Lett.*, **91**, 242504 (2007).
- [2] J. Fukami et al, *Appl. Phys. Express.*, 3, 113002 (2010).
- [3] Y. B. Zhang et al, *IEEE Trans. Magn.*, **30**, 4440 (1994).