RF スパッタリング法による GaAs(111)基板上への GaN 薄膜成長に関する研究

下川 顕太郎, 伊藤 亘, 齊藤 勝彦, 田中 徹, 西尾 光弘, 郭 其新 (佐賀大学大学院工学系研究科)

1 はじめに

ワイドギャップ半導体である GaN は、発光ダイオード等の光デバイスに広く応用されている材料であり、また次世代パワーデバイス用材料として注目を集める材料である。従来は GaN 成長用基板として,サファイアが用いられているが、応用上の優位性への期待等を背景に、その他種々の結晶材料を基板として用いた研究が行われている[1]。我々は、高移動度の特徴を持つGaAs に着目し、GaAs ターゲットを用いたスパッタリング法による GaAs(111)基板上への GaN 薄膜成長研究を進めている。今回は、反応性スパッタリングガス(Ar+N2)の混合比を幅広く変化させて GaN 薄膜成長を行い、得られた薄膜の結晶性等を評価した。

2 実験方法

RFスパッタリング法を用いて GaAs(111)基板上に GaN 薄膜の成長を行った。反応性スパッタガスとして N_2 及び Ar との混合ガスを用い、ターゲット材料として GaAs ウェハを用いた。成長を行う前に、GaAs(111)基 板に有機洗浄及びウェットエッチングを施した。成膜 時のガス流量、圧力、基板温度、ターゲットへの出力は、それぞれ 4sccm、5mTorr、700℃、100W とし、90 分の成膜時間で成長を行った。サンプルごとに反応性 スパッタリングガスの混合比を変化させ、成膜時の N_2 濃度を $40\sim100\%$ で変化させた。作成した GaN 薄膜は 顕微ラマン分光測定装置及び X 線回折(XRD)装置を用いて評価した。

3 実験結果と考察

Fig.1 に顕微ラマン分光測定装置による測定結果を示す。全ての N_2 濃度において 567cm^{-1} , 734cm^{-1} 付近にそれぞれ $E_2(\text{High})$, $A_1(\text{LO})$ のピークが得られた。このことから,すべてのサンプルにおいて六方晶ウルツ鉱構造の GaN が成膜されたと言える。Fig.2 に XRD による測定結果を示す。 N_2 濃度が $70 \sim 100\%$ のサンプルにおいては GaN の 002 回折ピークが顕著に確認され, N_2 濃度が 60%以下のサンプルでは 100 回折ピークが顕著になるという結果が得られた。このことから,作成したGaN の結晶配向性が N_2 濃度に依存して変化するということがわかった。

4 まとめ

本研究では RF スパッタリング法を用いて GaAs(111) 基板上に GaN 薄膜を成長した。反応性スパッタリングガスとして用いた N_2 と Ar の混合比を幅広く変化させることによる GaN の結晶性等への影響を調査した。作成したサンプルを評価した結果,六方晶ウルツ鉱構造の GaN が得られ,その配向性は反応性スパッタリングガス(Ar+ N_2)の N_2 濃度により変化することがわかった。

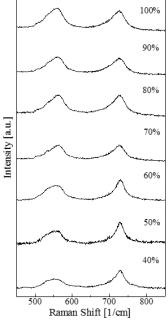


Fig.1 Raman spectra of GaN films grown at different nitrogen concentration in sputtering gas.

Fig.2 XRD patternes of GaN films grown at different nitrogen concentration in sputtering gas.

参考文献

[1] L. Liu, J.H. Edgar, Materials Science and Engineering R 37 (2002) 61-127