管理者向け無線通信状態可視化手法に関する研究

清水大 原植稔幸 三浦理 西野浩明 (大分大学)

1. 研究背景と目的

近年, 無線 LAN の導入が急速に進展するのに伴い, 構 内網の適切かつ効率的な管理が重要となっている. 例え ば, 通信障害の発生時には, 短時間でその原因を特定し, 適切に復旧・改善作業を行う必要がある. 通信障害の状態 が長引くと多くの業務に支障が出るため, 迅速な対応が求 められる. 一方, 無線 LAN の導入・運用が急速に拡大した ために, 専任の管理者が不足し, 管理業務の経験が乏し い利用者が特定部署の無線 LAN を管理しなければならな い状況も発生している. このため, 専門知識や経験の乏し い管理者が, 迅速に障害の原因を探索・特定し, 効率的に 復旧・改善作業を実施できるようにするために, 管理業務を 有効に支援できるツールの提供が重要である.

本稿では、無線LANの電波状況の変化に起因する通信 障害に着目し、経時的に変化する電波の受信状況を複数 の端末から得られる電波強度情報を基に可視化する方法 を提案する.管理者は、可視化される最新の電波状態を確 認しながら、適切に復旧・改善措置を講じることができる.

2. 通信障害の検知・復旧作業

無線 LAN の管理者は,通常,電波状態の変化による通 信障害の発生検知とその復旧・改善作業を,次のような手 順で実施する.

(1) 通信状態の確認と障害発生の検知

管理者が常駐するサイトでは,無線 LAN の状態を定期 的に確認することで障害を検知できる場合もあるが,通常 は利用者からの連絡で障害を察知する場合が多い.

(2) 原因の検証と特定

管理者は、通信障害の発生が報告された情報端末の場所へ出向き、その原因が無線LANか、あるいは端末、サーバ、インフラ網にあるのかを切り分ける. 無線 LAN の受信状態が原因であれば、その周辺の電波状態を調査する. このとき、WirelessNetView [1]のような、電波状況確認作業を支援するツールを用いることが可能であるが、計測できるAP(Access Point)の SSID や MAC アドレス、電波強度の計測値などを直接閲覧しながら判断する必要があり、経験が乏しい管理者には理解するのが難しい.

(3) 復旧および改善作業

無線の受信状況を確認した後に、その状態を復旧する には、APと端末間に新たな障害物が設置されていないか 等の確認も必要であるが、通常、APの設置位置や向きを 調整することで、電波状態が大きく改善できることがある. Funabikiらは、MIMO型APの設置位置や角度を少し変化 させることで、受信範囲内に設置した端末での電波受信状 況が劇的に変化することを報告している[2].しかしながら、 APの調節は、わずかな修正で電波状態が大きく変化する ため、経験のある管理者でも適切に実施するのは難しい.

AP 調整作業では, 調整後の電波受信状況の変化を常 に監視しながら, AP の最適な設置位置や向きを効率的に 探索できなければならない. これには, 調整中の AP の動き に対して、周辺の端末における受信状況がどのように変化 しているのかを実時間で提示できる機能が有効である.そ こで、調整中の AP の周辺で使用されている端末群の受信 状況を常に収集しながら、その結果を分かりやすく管理者 に提示する機能を考案した.上述した WirelessNetView は、 同ツールを使用する端末における通信状態を確認するも のであり、複数端末の状況を同時に確認する機能は有して いない.また、上記(1)の障害検知作業においては、複数の AP が設置されたエリア全体の電波状態を提示する機能も 有効であり、併せてその実現方法を検討した.

3. 無線通信状態の可視化手法

前節で述べた, 複数 AP が設置されたエリア内の電波 状態可視化機能, および特定 AP の調整作業に対する 周辺電波状態監視機能について説明する.

(1) エリア内電波状態可視化機能

ある建物の1つのフロアや特定の部署など,複数のAP が設置された特定の管理対象エリアの電波状態を可視 化する機能である. 図1に, 同一フロアの8部屋を3つの AP でカバーするエリアを対象に可視化した例を示す. 同図では、エリア内の各部屋で使用されている端末から 収集した情報により、表1に示す閾値に基づいて色で各 部屋の電波状態を可視化している.表1は, MetaGeek 社が提供する電波の信号強度である RSSI (Received Signal Strength Indicator)の値とそのときの通信状態を 判断するときの基準レベルとの対応を公開資料[3]に基 づいて定義したものである. 青(優)あるいは緑(良)で色付 けされている場所では、安定した無線接続が担保できて いるが、黄(可)あるいは赤(不可)の場所では接続不良状 態が発生しており、管理者による調査が必要であることを 示す.このような色分け表示により,経験の乏しい管理者 でもエリアの電波状態が直観的に確認できる.

表 1. 色による通信状態可視化のための閾値

通信状態	RSSI (dBm)
Excellent(青)	-61 以上
Good(緑)	$-74 \sim -62$
Fair(黄)	$-86 \sim -75$
Poor(赤)	-97~-87

図 1. エリア内電波状態可視化機能の表示例

(2) AP 調整向け周辺電波状態監視機能

図2に、(1)と同じエリアに対して本機能を用いた電波 状態を可視化した例を示す.管理者は、調整を行う AP の所で作業を行う際に本機能を選択する.(1)のエリア可 視化機能では、各部屋の端末で受信できる複数のAPか ら伝播する信号の中で、最も高い強度値で表示色を決 定するのに対し、本機能は調整対象とする AP による強 度値のみを用いてエリアの着色・可視化を行う.管理者 はこの画面を見ながら、AP の位置と向きを修正したとき に、更新描画される各部屋の電波の受信状況を確認し ながら、当該 AP の最適な位置と向きを決定する.

これらの機能は、管理者の作業時に手軽に持ち歩き ながら使用できる必要があるため、可視化部をスマートフ ォン上で実装する.

図 2. AP 調整向け周辺電波状態監視機能の表示例

4. 提案システムの実現法

上述した可視化手法を実現するためのシステム構成 法を図3に示す.システムは、サーバ、管理対象エリアの 各部屋に配置するRSSIデータ収集用端末、および管理 者向けの情報提示用スマートフォンから構成される.各 端末は、近隣APから受信できる電波強度であるRSSIデ ータをサーバに定期的に送信し、サーバは、管理者用ス マートフォンから要求される可視化機能の種類に応じて、 各部屋の通信状況データを提供する.また、サーバは、 端末から送信されるRSSIデータを監視しておき、表1の 定義から不良通信状態にあると判断される部屋を検知 すると、メールで管理者に警告メッセージを送信する.管 理者は、サーバから送信される警告メールを契機に、電 波状態を確認しながら問題個所の特定と復旧作業を行う ことができる.

5. まとめと今後の課題

本稿では、無線LANでカバーされるエリアの通信状態を 可視化し、通信障害発生時の原因特定や復旧作業を行う 管理者を有効に支援できるシステムを提案した.本システ ムでは、電波の受信状況の変化に伴い、APの調整作業で 復旧が可能になるケースを対象にシステムの設計を行った. また、通信状態の判定には、一般的な無線通信管理で利 用される、信号強度(RSSI)に基づく閾値判定の仕組みを利 用した. 今後は, 実際の無線運用環境でシステムを使用す ることで, 提案手法の有効性について検証する予定である. さらに, RSSI データ収集用の端末の設定方法など, 実際の 管理業務で活用する際に利便性を考慮すべき点について も検討する必要がある.

参考文献

- [1] NirSoft: WirelessNetView Wireless Network Monitoring Software, available from <http://www.nirsoft.net/utils/wireless_network_view. html> (accessed at Aug. 2, 2016).
- [2] Nobuo Funabiki, Kyaw Soe Lwin, Minoru Kuribayashi, and I-Wei Lai : Throughput Measurements for Access-Point Installation Optimization in IEEE 802.11n Wireless Networks, Proc. IEEE ICCE-TW 2016, pp.218-219, May 2016.
- [3] MetaGeek: inSSIDer User Guide, available from <http://faculty.ccri.edu/jbernardini/JB-Website/ET EK1500/2014Fall/MetaGeek_inSSIDer_WiFi-Scanner_ UserGuide_2012.pdf>, (accessed at Aug. 2, 2016).