高周波交番電圧重畳に基づいた PM モータ位置センサレス制御における 位置推定方式の比較

甲斐崚大朗* 山本吉朗 大濱嘉恭 (鹿児島大学大学院 理工学研究科)

1 はじめに

近年,永久磁石の高性能化に伴い,高効率永久磁石モ ータの位置センサレス制御が様々な分野で利用されるよう になってきた。筆者らは,高周波交番電圧重畳に基づいた PM モータ位置センサレス運転^{[1],[2]}における,位置・速度演 算アルゴリズムについて比較検討を行ったので報告する。

2 位置速度推定の原理

図 1 に実験システムの構成を示す。このシステムでは、 制御側で制御系の d 軸(以後 dc 軸と呼ぶ)上の V_{sdc} に高周 波の交番電圧 $V_c \sin(2\pi 500t)$ [V] ($V_c = 60$ V, $f_c = 500$ Hz) を重畳して qc 軸上の電流 i_{qc} の脈動を観測する。dc-qc 軸と 実際のモータ側 d-q 軸との誤差 $\delta \geq i_{qc}$ の脈動の関係により 位置を推定する。誤差 δ は、(1)式を用いて求めることがで きる^{[1],[2]}。

$$\sin 2\delta = \frac{2L_d L_q}{L_d - L_q} \frac{pi_{qc}}{V_c \sin(2\pi 500t)}$$
(1)

ここで、p=d/dt である。具体的には $\delta=0$ のとき、すなわち dc-qc 軸と d-q 軸とが一致したときに、 i_{qc} の脈動分 Δi_{qc} が 0 となることから、 Δi_{qc} を 0 に近づけることにより位置を推定し ている。dc-qc 軸と d-q 軸を一致させるために Δi_{qc} を 0 にす る制御アルゴリズムを図 2 に示す。

3 無負荷,速度上昇時の各位置推定方式の比較

3.1 方式 A と方式 B₁の比較

表1に示す実験で用いた PM モータの仕様を示す。また 位置・速度推定ブロックを図 2 に,各位置推定方式のゲイ ン設定を表 2 に示す。図 2(a)の方式 A では, 推定位置は Δi_{ac} に比例ゲイン K_P をかけた値Pを積分することで得られ, 速度は位置を微分することで得られる^[2]。一般に、微分演 算に際し, 推定位置の 2π から 0 への切り替わりでノイズの 対策が必要だが、今回はノイズを評価するため対策してい ない。この方式 A は図 2(b)において, Kp=1000, Kp=0 と設 定した方式 B_1 と同様であるが、方式 B_1 では速度を Δi_{ac} から 直接求めることができる^[3]。図3,4に位置・速度推定方式A と方式 B1の実験結果を示す。方式 A では速度を位置から 計算するため, 位置が 2π から0 に切り替わるときに比例出 力 P にノイズが発生してしまう。しかし、方式 B1 では Δiacか ら直接速度を求めることができるため、位置の切り替わりで ノイズは発生せず、方式 A よりもノイズに対して強いことが わかる。また,位置推定誤差に関してはどちらの方式も同 様に抑制できている。

3.2 方式 B1と方式 B2の比較

方式 A と方式 B₁では速度に関して比例ゲインのみを用いて位置推定していたが,比例出力のみで速度を求めると,速度上昇に伴い Δi_{qc} の値は増加し,位置推定誤差が速度に比例して増加してしまう。そのため,位置推定誤差を0にすることが構造上困難であった。また,速度指令をステップで変化させる場合には小さな K_P の値をでは速度指令に追従できず制御が外れてしまったため,方式 A,方式 B₁では

 $K_P=1000$ とかなり大きな値に設定している。そのため比例 出力 Pにノイズが生じ、結果として、推定位置にもノイズ生 じてしまうのが問題になっていた。これらの問題を解決する ため、方式 B_2 では、積分を加え、比例出力 Pと積分出力 Iを速度推定に用いることで $\Delta i_{qc} \ge 0$ にできる構成に変更を 行った^[3]。方式 B_2 を用いた場合の実験結果を図5に示す。 積分を追加したことで比例出力 Pが方式 B_1 よりも減少して おり、推定位置のノイズや、位置推定誤差が抑制できてい る。

表1 供試機の仕様			
極数	8		
鎖交磁束 ϕ	0.1156 Wb		
<i>d</i> 軸インダクタンス	18 mH		
q軸インダクタンス	22 mH		
電機子抵抗 R _a	1.75 Ω		
定格出力	400 W		
定格電圧	210 V		
定格電流	1.4 A		
定格回転数 N	2300 rpm		
定格トルク T	1.60 N • m		

(b)方式B *di_g*から直接速度を,その積分から位置を求める位置推定方式

図2 位置・速度推定のブロック図

表2 各位置推定方式の位置推定ゲイン

方式		В		
ゲイン 設定	A	B_1	B_2	B_3
K_P	1000	1000	1000	200
K_I	_	0	100	100

図 3 無負荷で速度指令を 30 rpm から 90 rpm にステップ変化させたとき の実験結果(方式 A)

図 4 無負荷で速度指令を 30 rpm から 90 rpm にステップ変化させたとき の実験結果(方式 B₁)

図 5 無負荷で速度指令を 30 rpm から 90 rpm にステップ変化させたとき の実験結果(方式 B₂)

3.3 方式 B₂と方式 B₃の比較

図 5 より, 方式 B₂の場合, 速度指令を 30 rpm から 90 rpm にステップ変化させた直後, 位置推定誤差が増加する ことなく位置を推定できていることが確認できた。しかし方 式 B₂の場合, 積分時定数 τ (= K_P/K_I)が 10 s で長いため, 積分制御の応答が悪くなる。方式 B₃ では積分の応答を良 くするため, 積分時定数 τ (= K_P/K_I)を2 s に縮小した。この ときの速度ステップ指令に対する位置推定の応答を図 6 に 示す。速度ステップ直後,図より,方式 B_2 の場合よりも広 がるが,時間経過とともに抑制できていることがわかる。また, 位置推定誤差の脈動も方式 B_2 の場合よりも抑制できてい る。これら結果から,位置推定誤差の評価において,定常 状態では方式 B_3 のゲイン設定が最も適切であるが,定常 時,過渡時ともに位置推定誤差を抑制できるゲイン設定は 方式 B_2 の場合であることを明らかした。

図 6 無負荷で速度指令を 30 rpm から 90 rpm にステップ変化させたとき の実験結果(方式 B₃)

4 まとめ

本稿では、高周波交番電圧重畳に基づいた PM モータ 位置センサレス制御における位置・速度推定部のアルゴリ ズムについて比較検討を行い、無負荷における位置推定 誤差からそれぞれの方式を評価した。

文献

- T. Aihara, A. Toba, T. Yanase, A. Mashimo, K. Endo : "Sensorless Torque Control of Salient-Pole Synchronous Motor at Zero-Speed Operation", *IEEE Trans. Power Electronics*, vol.14, pp202-208, January (1999)
- [2] 上別府,山本,秋山:平成26年度電気関係学会九州 支部連合大会講演論文集,03-2P-10
- [3] Hugo W. De Kock, Maarten J. Kamper, Ralph M. Kennel:"Anisotropy Comparison of Reluctance and PM Synchronous Machines for Position Sensorless Control Using HF Carrier Injection", *IEEE Trans. Power Electronics*, vol.24, No.8, pp1905-1913, August, 2009