要素整合熱容量行列を数値積分により求める 関数は、以下のようになる。
/* 要素整合熱容量行列:三次元 */
void WH_ThermalFem3D__Linear__C_arrayInJn
(WH_Fem__Shape3DType shapeType,
WH_Fem__Element3DType elementType,
int nNodes,
double whV_x_arrayIn[/* nNodes */][3],
double rho,
double c,
double OUT__C_arrayInJn[/* nNodes * nNodes */])
/*
入力引数:
shapeType は要素形状のタイプ
elementType は要素のタイプ
nNodes は整数で、要素節点数
whV_x_arrayIn はベクトルの節点配列で、位置(節点座標)
rho はスカラーで、質量密度
c はスカラーで、比熱
出力引数:
OUT__C_arrayInJn はスカラーの配列(節点、節点)で、
要素整合熱容量行列
*/
{
int order;
int nPoints;
int Ip;
int In, Jn;
switch (elementType) {
case WH_FEM__ELEMENT3D__TETRA4N:
order = 2;
break;
case WH_FEM__ELEMENT3D__TETRA10N:
case WH_FEM__ELEMENT3D__HEXA8N:
order = 3;
break;
case WH_FEM__ELEMENT3D__HEXA20N:
case WH_FEM__ELEMENT3D__HEXA27N:
order = 4;
break;
default:
assert(0);
break;
}
for (In = 0; In < nNodes; In++) {
for (Jn = 0; Jn < nNodes; Jn++) {
OUT__C_arrayInJn[In * nNodes + Jn] = 0.0;
}
}
WH_Fem__NumInt__Gauss3D__nPoints
(shapeType, order,
&nPoints);
for (Ip = 0; Ip < nPoints; Ip++) {
double whV_xi_Ip[3];
double w_Ip;
double whP_N_whV_xi_arrayIn[WH_FEM__MAX_ELEMENT_NODES][3];
double N_arrayIn[WH_FEM__MAX_ELEMENT_NODES];
double whPt_whV_x_whV_xi[3][3];
double J_V;
WH_Fem__NumInt__Gauss3D__whV_xi_Ip
(shapeType, order, Ip,
whV_xi_Ip);
WH_Fem__NumInt__Gauss3D__w_Ip
(shapeType, order, Ip,
&w_Ip);
WH_Fem__Shape3D__whP_N_whV_xi_arrayIn
(elementType, nNodes, whV_xi_Ip,
whP_N_whV_xi_arrayIn);
WH_Fem__Shape3D__N_arrayIn
(elementType, nNodes, whV_xi_Ip,
N_arrayIn);
WH_Fem__Isoparam3D__Volume__whPt_whV_x_whV_xi
(nNodes, whP_N_whV_xi_arrayIn, whV_x_arrayIn,
whPt_whV_x_whV_xi);
WH_Fem__Isoparam3D__Volume__J_V
(shapeType, whPt_whV_x_whV_xi,
&J_V);
for (In = 0; In < nNodes; In++) {
for (Jn = 0; Jn < nNodes; Jn++) {
double C;
C = rho * c * N_arrayIn[In] * N_arrayIn[Jn];
OUT__C_arrayInJn[In * nNodes + Jn]
+= C * J_V * w_Ip;
}
}
}
}