要素内部発熱項ベクトルを数値積分により求める 関数は、以下のようになる。
/* 要素内部発熱項ベクトル:三次元 */
void WH_ThermalFem3D__Linear__Q_body_arrayIn
(WH_Fem__Shape3DType shapeType,
WH_Fem__Element3DType elementType,
int nNodes,
double whV_x_arrayIn[/* nNodes */][3],
double q_body,
double OUT__Q_body_arrayIn[/* nNodes */])
/*
入力引数:
shapeType は要素形状のタイプ
elementType は要素のタイプ
nNodes は整数で、要素節点数
whV_x_arrayIn はベクトルの節点配列で、位置(節点座標)
q_body はスカラーで、内部発熱率
出力引数:
OUT__Q_body_arrayIn はスカラーの配列(節点)で、
要素内部発熱項ベクトル
*/
{
int order;
int nPoints;
int Ip;
int In;
switch (elementType) {
case WH_FEM__ELEMENT3D__TETRA4N:
order = 1;
break;
case WH_FEM__ELEMENT3D__TETRA10N:
case WH_FEM__ELEMENT3D__HEXA8N:
order = 2;
break;
case WH_FEM__ELEMENT3D__HEXA20N:
case WH_FEM__ELEMENT3D__HEXA27N:
order = 3;
break;
default:
assert(0);
break;
}
for (In = 0; In < nNodes; In++) {
OUT__Q_body_arrayIn[In] = 0.0;
}
WH_Fem__NumInt__Gauss3D__nPoints
(shapeType, order,
&nPoints);
for (Ip = 0; Ip < nPoints; Ip++) {
double whV_xi_Ip[3];
double w_Ip;
double whP_N_whV_xi_arrayIn[WH_FEM__MAX_ELEMENT_NODES][3];
double N_arrayIn[WH_FEM__MAX_ELEMENT_NODES];
double whPt_whV_x_whV_xi[3][3];
double J_V;
WH_Fem__NumInt__Gauss3D__whV_xi_Ip
(shapeType, order, Ip,
whV_xi_Ip);
WH_Fem__NumInt__Gauss3D__w_Ip
(shapeType, order, Ip,
&w_Ip);
WH_Fem__Shape3D__whP_N_whV_xi_arrayIn
(elementType, nNodes, whV_xi_Ip,
whP_N_whV_xi_arrayIn);
WH_Fem__Shape3D__N_arrayIn
(elementType, nNodes, whV_xi_Ip,
N_arrayIn);
WH_Fem__Isoparam3D__Volume__whPt_whV_x_whV_xi
(nNodes, whP_N_whV_xi_arrayIn, whV_x_arrayIn,
whPt_whV_x_whV_xi);
WH_Fem__Isoparam3D__Volume__J_V
(shapeType, whPt_whV_x_whV_xi,
&J_V);
for (In = 0; In < nNodes; In++) {
double Q_body;
Q_body = q_body * N_arrayIn[In];
OUT__Q_body_arrayIn[In]
+= Q_body * J_V * w_Ip;
}
}
}