next up previous contents
: 実装 : 2次 : 実装   目次

形状関数の微分

形状関数の体積座標 $L0$ に関する微分 $ \frac{ \partial N }{ \partial L0 } _{(In)}$ は、


$\displaystyle \frac{ \partial N }{ \partial L0 } _{(0)}$ $\textstyle =$ $\displaystyle 4 L0 - 1$  
$\displaystyle \frac{ \partial N }{ \partial L0 } _{(1)}$ $\textstyle =$ $\displaystyle 0$  
$\displaystyle \frac{ \partial N }{ \partial L0 } _{(2)}$ $\textstyle =$ $\displaystyle 0$  
$\displaystyle \frac{ \partial N }{ \partial L0 } _{(3)}$ $\textstyle =$ $\displaystyle 0$  
$\displaystyle \frac{ \partial N }{ \partial L0 } _{(4)}$ $\textstyle =$ $\displaystyle 4 L1$  
$\displaystyle \frac{ \partial N }{ \partial L0 } _{(5)}$ $\textstyle =$ $\displaystyle 4 L2$  
$\displaystyle \frac{ \partial N }{ \partial L0 } _{(6)}$ $\textstyle =$ $\displaystyle 4 L3$  
$\displaystyle \frac{ \partial N }{ \partial L0 } _{(7)}$ $\textstyle =$ $\displaystyle 0$  
$\displaystyle \frac{ \partial N }{ \partial L0 } _{(8)}$ $\textstyle =$ $\displaystyle 0$  
$\displaystyle \frac{ \partial N }{ \partial L0 } _{(9)}$ $\textstyle =$ $\displaystyle 0$ (3.40)

体積座標 $L1$ に関する微分 $ \frac{ \partial N }{ \partial L1 } _{(In)}$ については、


$\displaystyle \frac{ \partial N }{ \partial L1 } _{(0)}$ $\textstyle =$ $\displaystyle 0$  
$\displaystyle \frac{ \partial N }{ \partial L1 } _{(1)}$ $\textstyle =$ $\displaystyle 4 L1 - 1$  
$\displaystyle \frac{ \partial N }{ \partial L1 } _{(2)}$ $\textstyle =$ $\displaystyle 0$  
$\displaystyle \frac{ \partial N }{ \partial L1 } _{(3)}$ $\textstyle =$ $\displaystyle 0$  
$\displaystyle \frac{ \partial N }{ \partial L1 } _{(4)}$ $\textstyle =$ $\displaystyle 4 L0$  
$\displaystyle \frac{ \partial N }{ \partial L1 } _{(5)}$ $\textstyle =$ $\displaystyle 0$  
$\displaystyle \frac{ \partial N }{ \partial L1 } _{(6)}$ $\textstyle =$ $\displaystyle 0$  
$\displaystyle \frac{ \partial N }{ \partial L1 } _{(7)}$ $\textstyle =$ $\displaystyle 4 L2$  
$\displaystyle \frac{ \partial N }{ \partial L1 } _{(8)}$ $\textstyle =$ $\displaystyle 0$  
$\displaystyle \frac{ \partial N }{ \partial L1 } _{(9)}$ $\textstyle =$ $\displaystyle 4 L3$ (3.41)

体積座標 $L2$ に関する微分 $ \frac{ \partial N }{ \partial L2 } _{(In)}$ については、


$\displaystyle \frac{ \partial N }{ \partial L2 } _{(0)}$ $\textstyle =$ $\displaystyle 0$  
$\displaystyle \frac{ \partial N }{ \partial L2 } _{(1)}$ $\textstyle =$ $\displaystyle 0$  
$\displaystyle \frac{ \partial N }{ \partial L2 } _{(2)}$ $\textstyle =$ $\displaystyle 4 L2 - 1$  
$\displaystyle \frac{ \partial N }{ \partial L2 } _{(3)}$ $\textstyle =$ $\displaystyle 0$  
$\displaystyle \frac{ \partial N }{ \partial L2 } _{(4)}$ $\textstyle =$ $\displaystyle 0$  
$\displaystyle \frac{ \partial N }{ \partial L2 } _{(5)}$ $\textstyle =$ $\displaystyle 4 L0$  
$\displaystyle \frac{ \partial N }{ \partial L2 } _{(6)}$ $\textstyle =$ $\displaystyle 0$  
$\displaystyle \frac{ \partial N }{ \partial L2 } _{(7)}$ $\textstyle =$ $\displaystyle 4 L1$  
$\displaystyle \frac{ \partial N }{ \partial L2 } _{(8)}$ $\textstyle =$ $\displaystyle 4 L3$  
$\displaystyle \frac{ \partial N }{ \partial L2 } _{(9)}$ $\textstyle =$ $\displaystyle 0$ (3.42)

体積座標 $L3$ に関する微分 $ \frac{ \partial N }{ \partial L2 } _{(In)}$ については、


$\displaystyle \frac{ \partial N }{ \partial L3 } _{(0)}$ $\textstyle =$ $\displaystyle 0$  
$\displaystyle \frac{ \partial N }{ \partial L3 } _{(1)}$ $\textstyle =$ $\displaystyle 0$  
$\displaystyle \frac{ \partial N }{ \partial L3 } _{(2)}$ $\textstyle =$ $\displaystyle 0$  
$\displaystyle \frac{ \partial N }{ \partial L3 } _{(3)}$ $\textstyle =$ $\displaystyle 4 L3 - 1$  
$\displaystyle \frac{ \partial N }{ \partial L3 } _{(4)}$ $\textstyle =$ $\displaystyle 0$  
$\displaystyle \frac{ \partial N }{ \partial L3 } _{(5)}$ $\textstyle =$ $\displaystyle 0$  
$\displaystyle \frac{ \partial N }{ \partial L3 } _{(6)}$ $\textstyle =$ $\displaystyle 4 L0$  
$\displaystyle \frac{ \partial N }{ \partial L3 } _{(7)}$ $\textstyle =$ $\displaystyle 0$  
$\displaystyle \frac{ \partial N }{ \partial L3 } _{(8)}$ $\textstyle =$ $\displaystyle 4 L2$  
$\displaystyle \frac{ \partial N }{ \partial L3 } _{(9)}$ $\textstyle =$ $\displaystyle 4 L1$ (3.43)

したがって、 形状関数の自然座標 $ \{ \xi \} $ に関する 微分 $ \frac{ \partial N }{ \partial \xi } _{(In)}$ は、 式 3.4 より、


$\displaystyle \frac{ \partial N }{ \partial \xi } _{(0)}$ $\textstyle =$ $\displaystyle 1 - 4 L0$  
$\displaystyle \frac{ \partial N }{ \partial \xi } _{(1)}$ $\textstyle =$ $\displaystyle 4 L1 - 1$  
$\displaystyle \frac{ \partial N }{ \partial \xi } _{(2)}$ $\textstyle =$ $\displaystyle 0$  
$\displaystyle \frac{ \partial N }{ \partial \xi } _{(3)}$ $\textstyle =$ $\displaystyle 0$  
$\displaystyle \frac{ \partial N }{ \partial \xi } _{(4)}$ $\textstyle =$ $\displaystyle 4 (L0 - L1)$  
$\displaystyle \frac{ \partial N }{ \partial \xi } _{(5)}$ $\textstyle =$ $\displaystyle -4 L2$  
$\displaystyle \frac{ \partial N }{ \partial \xi } _{(6)}$ $\textstyle =$ $\displaystyle -4 L3$  
$\displaystyle \frac{ \partial N }{ \partial \xi } _{(7)}$ $\textstyle =$ $\displaystyle 4 L2$  
$\displaystyle \frac{ \partial N }{ \partial \xi } _{(8)}$ $\textstyle =$ $\displaystyle 0$  
$\displaystyle \frac{ \partial N }{ \partial \xi } _{(9)}$ $\textstyle =$ $\displaystyle 4 L3$ (3.44)


$\displaystyle \frac{ \partial N }{ \partial \eta } _{(0)}$ $\textstyle =$ $\displaystyle 1 - 4 L0$  
$\displaystyle \frac{ \partial N }{ \partial \eta } _{(1)}$ $\textstyle =$ $\displaystyle 0$  
$\displaystyle \frac{ \partial N }{ \partial \eta } _{(2)}$ $\textstyle =$ $\displaystyle 4 L2 - 1$  
$\displaystyle \frac{ \partial N }{ \partial \eta } _{(3)}$ $\textstyle =$ $\displaystyle 0$  
$\displaystyle \frac{ \partial N }{ \partial \eta } _{(4)}$ $\textstyle =$ $\displaystyle -4 L1$  
$\displaystyle \frac{ \partial N }{ \partial \eta } _{(5)}$ $\textstyle =$ $\displaystyle 4 (L0 - L2)$  
$\displaystyle \frac{ \partial N }{ \partial \eta } _{(6)}$ $\textstyle =$ $\displaystyle -4 L3$  
$\displaystyle \frac{ \partial N }{ \partial \eta } _{(7)}$ $\textstyle =$ $\displaystyle 4 L1$  
$\displaystyle \frac{ \partial N }{ \partial \eta } _{(8)}$ $\textstyle =$ $\displaystyle 4 L3$  
$\displaystyle \frac{ \partial N }{ \partial \eta } _{(9)}$ $\textstyle =$ $\displaystyle 0$ (3.45)


$\displaystyle \frac{ \partial N }{ \partial \zeta } _{(0)}$ $\textstyle =$ $\displaystyle 1 - 4 L0$  
$\displaystyle \frac{ \partial N }{ \partial \zeta } _{(1)}$ $\textstyle =$ $\displaystyle 0$  
$\displaystyle \frac{ \partial N }{ \partial \zeta } _{(2)}$ $\textstyle =$ $\displaystyle 0$  
$\displaystyle \frac{ \partial N }{ \partial \zeta } _{(3)}$ $\textstyle =$ $\displaystyle 4 L3 - 1$  
$\displaystyle \frac{ \partial N }{ \partial \zeta } _{(4)}$ $\textstyle =$ $\displaystyle -4 L1$  
$\displaystyle \frac{ \partial N }{ \partial \zeta } _{(5)}$ $\textstyle =$ $\displaystyle -4 L2$  
$\displaystyle \frac{ \partial N }{ \partial \zeta } _{(6)}$ $\textstyle =$ $\displaystyle 4 (L0 - L3)$  
$\displaystyle \frac{ \partial N }{ \partial \zeta } _{(7)}$ $\textstyle =$ $\displaystyle 0$  
$\displaystyle \frac{ \partial N }{ \partial \zeta } _{(8)}$ $\textstyle =$ $\displaystyle 4 L2$  
$\displaystyle \frac{ \partial N }{ \partial \zeta } _{(9)}$ $\textstyle =$ $\displaystyle 4 L1$ (3.46)


next up previous contents
: 実装 : 2次 : 実装   目次
Hiroshi KAWAI 平成15年4月19日